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Abstract: We introduce the Humanoid Diffusion Controller (HDC), the first
diffusion-based generative controller for real-time whole-body control of hu-
manoid robots. Unlike conventional online reinforcement learning (RL) ap-
proaches, HDC learns from large-scale offline data and leverages a Diffusion
Transformer to generate temporally coherent action sequences. This design pro-
vides high expressiveness, scalability, and temporal smoothness. To support train-
ing at scale, we propose an effective data collection pipeline and training recipe
that avoids costly online rollouts while enabling robust deployment in both simu-
lated and real-world environments. Extensive experiments demonstrate that HDC
outperforms state-of-the-art online RL methods in motion tracking accuracy, be-
havioral quality, and generalization to unseen motions. These findings underscore
the feasibility and potential of large-scale generative modeling as a scalable and
effective paradigm for generalizable and high-quality humanoid robot control.
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1 Introduction

Humanoid whole-body control plays a crucial role in enabling robots to perform complex, coordi-
nated motions across a wide range of applications, including assistive robotics, industrial automa-
tion, and entertainment. Achieving robust, dynamic, and versatile control of humanoid systems
is a fundamental step toward deploying robots in real-world, unstructured environments. Existing
model-based controllers [1–3] achieve strong performance but rely on simplified dynamics mod-
els due to the high computational cost of full-body modeling, limiting their scalability to diverse
motions and generalizability to unseen environments.

Recent progress in humanoid whole-body control has been primarily driven by online reinforcement
learning (RL) [4–16], enabling the development of policies capable of handling complex, high-
dimensional whole-body tasks. However, these approaches face several critical limitations: 1) Their
reliance on online rollouts limits scalability to larger models and datasets, hindering improvements
in generalization and the development of more versatile control policies. 2) These methods [11–
15] typically model the action at each timestep as a Gaussian distribution conditioned on the current
observation and goal state, which encourages the policy to predict the most likely action but limits its
ability to capture richer multimodal action distributions inherent in humanoid whole-body behaviors.
3) The use of single-step action predictions at every timestep often leads to jittery motions and the
accumulation of errors over long horizons [17, 18].

To tackle these limitations, we propose the Humanoid Diffusion Controller (HDC), the first
diffusion-based generative model for real-time whole-body control of humanoid robots. HDC
draws inspiration from recent advances in large-scale generative modeling, which have demonstrated
strong performance, generalization, and adaptability across various domains [19–24]. By framing
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Figure 1: Overview of HDC. (a) HDC performs large-scale generative learning using expressive models.
(b) HDC frames whole-body control as action sequence generation, improving multi-modality and temporal
smoothness. (c) Online RL-based controllers require interaction with the environment during training, limiting
scalability. (d) Prior controllers predict single-step, unimodal actions, resulting in limited expressiveness and
jitter. (e) Deployment results of HDC in both simulation and the real world.

whole-body control as an action sequence generation task, HDC leverages a diffusion-based ar-
chitecture to learn from large-scale offline data, enabling three key properties of learned humanoid
controller:

• Expressiveness: HDC excels at capturing the multimodal nature of human whole-body actions
by leveraging diffusion models’ capacity to represent complex, high-dimensional distributions
learned from large-scale datasets.

• Scalability: HDC uses Diffusion Transformers (DiTs)[25] as a scalable backbone, enabling scal-
able performance improvements by learning from vast amounts of data.

• Temporal Smoothness: Unlike methods that predict single-step action[11–16], HDC generates
action sequences by sampling from a high-dimensional space, resulting in smooth and coherent
motions over time and effectively mitigating jittery behaviors and compounding errors.

To unleash the full potential of HDC ’s expressiveness and scalability, we train it using large-scale
offline data, without requiring online simulation during training. However, applying offline learning
to the control of humanoid robots—characterized by complex dynamics, high degrees of freedom,
and stringent physical feasibility requirements—remains a significant challenge. To overcome this,
we propose an effective data collection pipeline and training recipe that allows HDC to learn di-
rectly from vast offline datasets, achieving precise and robust whole-body control. In contrast to
approaches that require continuous interaction with simulation during training [11, 13–15], our of-
fline paradigm facilitates superior scalability in terms of both dataset size and model complexity.

Notably, to meet the real-time demands of physical robot control, our diffusion noise scheduler is de-
signed with a linearly increasing noise level during both training and inference [26, 27]. This enables
HDC to generate partially denoised action trajectories and execute immediate actions, allowing for
faster sampling and control.

In summary, our contributions are as follows:

• We introduce HDC, a Diffusion Transformer-based real-time humanoid whole-body controller
with expressiveness, scalability, and temporally smoothness. Its powerful model capacity and
advanced architecture enable robust, precise, and seamless deployment in both simulation and
real-world environments.

• We propose an effective data collection pipeline and training strategy that allows HDC to learn
humanoid whole-body control policies entirely from offline data, eliminating the need for on-
line simulation during training. This offline paradigm further facilitates scalable learning from
diverse datasets using larger models.

• Extensive experiments across both simulated and real-world environments demonstrate that HDC
consistently outperforms state-of-the-art online RL-based controllers in whole-body motion track-
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ing. These results underscore the effectiveness of expressive generative models trained offline for
achieving robust, generalizable, and high-quality humanoid control.

• This work shows that learning humanoid whole-body control from large-scale offline data using
expressive generative models is not only feasible but also highly effective, paving the way for
future scaling of model and data sizes. Furthermore, it positions HDC as a promising foundation
model for general-purpose humanoid control.

2 Related Work

2.1 Whole-Body Control for Humanoids via Reinforcement Learning

Whole-body control of humanoid robots remains a longstanding challenge. Recent advances in sim-
to-real reinforcement learning have enabled effective transfer of control policies from simulation to
real-world robots [4–16, 28, 29]. RL-based methods have significantly improved humanoid locomo-
tion by enabling stable and robust movement execution [4–10, 12, 28, 30]. Building on this, recent
work has extended RL to whole-body control using point-based targets and motion commands, al-
lowing for diverse loco-manipulation behaviors [11, 13, 15, 29]. However, these approaches rely
on continual interaction with simulation [31, 32], which limits the scalability of both models and
datasets, constraining the full potential of deep networks.

2.2 Diffusion Models for Robotic Planning and Control

Due to their fascinating properties, diffusion models [33, 34] have gained increasing traction in
robotics, with applications in high-level trajectory planning, visuomotor control, and sequential de-
cision making [18, 35, 36]. However, existing work [18, 37, 38] has primarily focused on tasks
with low-dimensional action spaces, low replanning frequency, and inherently stable dynamics. The
effectiveness of diffusion models for low-level, high-frequency control tasks remains largely un-
explored. While DiffuseLoco[39] takes a step in this direction by applying diffusion models to
multi-skill learning on quadruped robots, the range of skills demonstrated is still limited, falling
short of fully showcasing the expressive capacity of diffusion-based policies.

2.3 Large-Scale Learning for Humanoid Robotics

The trend of scaling up model capacity, data volume, and computational resources has fueled break-
throughs across various domains of deep learning, giving rise to foundation models with remarkable
generalization and multi-task abilities[19, 22, 23, 25, 40]. In humanoid robotics, GR00T N1[41] and
Humanoid-X [42] have advanced scalable learning by focusing on upper-body control tasks through
vision-language-action modeling and large-scale human motion datasets. MaskedMimic[43] ex-
plores motion generation for virtual characters by formulating character control as a motion inpaint-
ing problem, though it remains confined to simulation without real-world transfer. However, the
application of large-scale generative modeling to humanoid whole-body control remains largely un-
explored. Our proposed HDC addresses this gap by enabling scalable, high-quality whole-body
control using expressive diffusion models trained purely from large-scale offline data.

3 Humanoid Diffusion Controller

In this section, we provide an overview of HDC, a model designed to generate action sequences in
real time and to learn whole-body control policies from offline datasets at scale.

3.1 Humanoid Whole-body Control

In humanoid whole-body control, actions are typically generated based on proprioceptive obser-
vations and a target goal state. We define the proprioceptive state at time step t as: st ≜
[qt, q̇t, ωt, gt], where qt and q̇t denote the joint positions and velocities (degrees of freedom), ωt

is the root angular velocity, and gt is the gravity vector expressed in the root frame.
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Figure 2: HDC training and inference. (a) During training, future action sequence At and past observation
sequence Ot are sampled from offline data. Each action in At is perturbed with a different noise level, and the
DiT model, conditioned on Ot, learns to denoise the entire action sequence.(b) During inference, each element
in the action buffer is initialized with linearly increasing noise. The denoiser iteratively denoise the buffer until
the first action becomes clean, which is then executed and removed from the buffer. A new purely noisy action
is appended to the end, and the process repeats recursively.

The control objective is to drive the robot to follow a desired kinematic trajectory specified by the
goal state: gt ≜

[
p̂kp
t , ˙̂pkp

t , p̂kp
t − pkp

t

]
, where p̂kp

t and ˙̂pkp
t are the desired positions and linear

velocities of selected body keypoints, and p̂kp
t − pkp

t represents the positional error with respect to
the current keypoint positions pkp

t . This formulation is consistent with prior works [11, 13].

Given the observation ot = [st,gt], which concatenates the current proprioceptive state st with the
goal state gt, the high-level controller outputs an action at representing the desired joint positions.
These targets are then tracked by a low-level PD controller that actuates the robot’s joints.

Traditional RL-based Control. Previous online reinforcement learning approaches [11–15] for-
mulate the learning problem as goal-conditioned RL for a Markov Decision Process (MDP). They
train the control policy in physical simulator based on the tracking reward and learn the action as
Gaussian distribution at = π(st,gt) ∼ N (µ, σ). As shown in Fig. 1, these models rely on online
rollouts and can only make single-step action prediction, limiting their capability to learn diverse
modalities and make time-consistent predictions.

3.2 Humanoid Whole-Body Control with Generative Models

HDC proposes to learn the humanoid control with expressive generative models, as shown in Fig. 1.
Specifically, it formulates whole-body control as a conditional action sequence generation task.
Therefore, we train a diffusion-based generative model to learn the distribution of action sequences
At = [at, . . . ,at+Ta−1] of length Ta into the future, conditioned on the past To timesteps of the goal
state Gt = [gt−To+1, . . . ,gt] and proprioception St = [st−To+1, . . . , st]. The diffusion process
then iteratively denoises the action sequence using Stochastic Langevin Dynamics[44]:

Ak−1
t ← αk(A

k
t − γkϵθ(A

k
t ;Gt,St, k) +N (0, σ2

k)), (1)

where Ak
t denotes the action sequence at the kth iteration, and ϵθ(A

k
t ,Gt,St, k) represents the

predicted noise by the denoising model ϵθ, parameterized by θ, conditioned on the current noisy
action sequence Ak

t , the goal state Gt, the proprioceptive state St, and the denoising timestep k.
The term N (0, σ2

k) denotes Gaussian noise sampled from the DDPM scheduler. The scheduler is
governed by three hyperparameters: αk, which controls the rate of noise injection at each step;
γk, which regulates the denoising strength; and σk, which determines the sampling stochasticity.
Each action sequence begins at diffusion step k = N (pure noise) and is gradually refined through
successive denoising iterations until k = 0, which corresponds to a clean, executable action.
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3.2.1 Partially Denoised Action Sequence Generation for Real-time Control

To generate the action sequence for humanoid whole-body control, we begin by sampling an initial
noisy action sequence, AN

t from Gaussian noise, and the DDPM [33] is then conditioned on goal
state Gt and proprioception St, and undergoes K iterations of denoising steps using Eq. (1). How-
ever, the K-iteration sampling process of vanilla DDPM, especially when using large models like
transformers, struggles to meet the real-time control frequency demands. We also find that using
accelerated sampling methods like DDIM [45] leads to degrade accuracy during sampling, which
underperform in humanoid whole-body control, as shown in Section 4.3.

Inspired by Diffusion Forcing [27] and Streaming Diffusion Policy [26], we adopt a Partially De-
noised Action Sequence Generation approach. In each denoising iteration, HDC produces a par-
tially denoised action sequence with varying levels of noise corruption. The immediate action to
be executed is noise-free, while subsequent actions progressively incorporate more noise and uncer-
tainty. Specifically, In HDC, the action At,i at action timestep i(0 ≤ i ≤ Ta − 1) is denoised at a
separate noise level ki from k = [k0, k1, . . . , kTa−1]:

Ak−1
t ← αk(A

k
t − γkϵθ(A

k
t ;Gt,St,k) +N (0, σ2

k)), (2)

with αk = [αk0
, αk1

, . . . , αkTa−1
]. The coefficients γk, σk are constructed similarly [26]. Each

action starts at a diffusion level of ki = N corresponding to pure noise, with ki = 0 corresponding to
a clean action. In our implementation, the action buffer stores a sequence of actions, each associated
with increasing noise levels:

k =

[
N

Ta
,
2N

Ta
, . . . , N

]
, (3)

The future actions At,i for i > 1 in the action buffer are used to generate actions in future observa-
tions. This design allows recursive sampling: after each control step, we perform a partial denoising
update on the buffer using Eq. (2), denoising each action by N

Ta
. The first action in the buffer (now

at k0 = 0) becomes noise-free and is executed. It is then removed from the buffer, and a new
action—initialized with pure noise—is appended to the end (illustrated in Fig. 2).

This recursive sampling mechanism achieves a Ta-fold speedup by avoiding full trajectory sam-
pling at each step. At the same time, it naturally models the increasing uncertainty of future actions.
This enables HDC to run at real-time control frequencies ranging from 80 to 200 Hz, supporting
stable and responsive humanoid control.

3.2.2 Training HDC

Building upon the principles of Partially Denoised Action Sequence Generation, we have the
flexibility to assign a unique variance to each element in

ϵk = [ϵk0 , . . . , ϵkTa−1
]T, (4)

corresponding to each action in the action sequence. This leads to the denoising loss:

L = MSE(ϵk, ϵθ(At + ϵk;Gt,St,k)), k ∈ ZTa . (5)

This formulation enables us to implement different action sequence noise schedules at inference
time by setting k = [k0, . . . , kTa−1]

T during training, as shown in Fig. 2. To enable the recursive
sampling described in Section 3.2.1, we apply linearly increasing noise to the steps of the action
sequence during training, consistent with Eq. (3).

3.3 Data Collection & Training Recipe

Policy Rollouts. To train HDC purely from offline data, we utilize an RL-based Oracle motion
tracking policy [13], which leverages extensive privileged information during training, to collect
state-action-goal pairs [St,At,Gt] in parallel during closed-loop rollouts of the robot’s dynamics in
simulation. Importantly, these state-action-goal pairs are source-agnostic and can be gathered from
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Table 1: Comparison of HDC and baseline methods on motion tracking. Domain randomization introduces
variability in simulation parameters, while observation noise perturbs sensor measurements. The full 22-
keypoint configuration tracks every joint of the humanoid, whereas the 3-keypoint configuration tracks only
the head and both hands.

Method Keypoints Sim2Real Succ (%) ↑ Eg-mpjpe ↓ Empjpe ↓ Eacc ↓ Evel ↓

Clean Environment

OmniH2O Oracle Policy 22 ✗ 91.74 129.89 82.51 3.17 6.47
OmniH2O Student Policy 3 ✓ 90.27 155.07 90.40 3.37 7.05
HDC 3 ✓ 92.59 154.06 92.35 4.95 7.43
HDC-full 22 ✓ 93.64 135.13 82.06 3.23 6.46

Domain Randomization

OmniH2O Oracle Policy 22 ✗ 88.67 139.50 84.28 3.50 7.01
OmniH2O Student Policy 3 ✓ 82.05 176.48 93.97 3.77 7.72
HDC 3 ✓ 88.88 169.93 95.01 5.88 8.39
HDC-full 22 ✓ 89.83 149.11 85.26 4.07 7.35

Domain Randomization + Observation Noise

OmniH2O Oracle Policy 22 ✗ 88.75 138.94 84.12 3.47 6.99
OmniH2O Student Policy 3 ✓ 70.89 227.28 104.83 7.12 11.52
HDC 3 ✓ 79.10 205.53 103.78 7.44 11.37
HDC-full 22 ✓ 86.79 170.25 89.39 5.96 6.48

oracle policies operating across diverse environments. This flexibility not only enables the integra-
tion of heterogeneous expert data, including policies derived from both reinforcement learning and
model-based controllers, but also offers the potential to extend data collection to the real world.

Training Recipe. To fully leverage the model capacity of HDC, constructing a diverse and robust
offline dataset is crucial. During data collection, we inject action noise into Oracle rollouts to expose
the system to a broader range of states [46], and perform rollouts under randomized dynamics to nat-
urally capture variations across environments. Specifically, we adopt a two-stage training recipe. In
the pre-training phase, we collect a large-scale dataset using stronger action noise and wider domain
randomization to encourage robustness and recovery in diverse and perturbed conditions. We then
apply post-training on a smaller dataset, where observation noise is injected into the state-goal pairs
to enhance HDC’s resilience to noisy perception, which is critical for real-world deployment. Ex-
perimental results in Section 4.2 confirm that this data and training strategy enables HDC to learn
precise, high-quality, and robust whole-body control purely from offline data.

4 Experiment Results

In this section, we present extensive experimental results in both simulated and real-world environ-
ments to address the following questions:

• Q1: Can HDC learn highly dynamic, self-stabilizing, and precise whole-body control capabilities
purely from large-scale offline data, without requiring online interaction with a simulator?

• Q2: Does our proposed data collection pipeline and training recipe effectively enhance HDC’s
control performance?

• Q3: Does HDC outperform vanilla diffusion policies and discriminative MLP-based controllers
in humanoid whole-body control?

• Q4: Can HDC achieve zero-shot generalization to both unseen motions and diverse environ-
ments—including the real world—when trained purely offline?
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Table 2: Performance and ablation analyses of HDC across different aspects.

(a) Training data and recipe ablation.

Training Setup Succ (%) ↑ Eg-mpjpe (mm) ↓
Clean Env. Noisy Obs. Clean Env. Noisy Obs.

Pre-training
Clean Data 0.00 0.00 N/A N/A
Data with Action Noise 95.43 29.46 144.38 238.14

Post-training
Clean Data 92.32 29.25 145.85 263.23
Data with Obs. Noise 97.30 90.87 132.30 172.46

(b) Model comparison in the offline training set-
ting. We compare HDC against discriminative mod-
els (MLP) and generative diffusion-based models
(DDPM, DDIM).
Method Succ ↑ Succ (DR) ↑ Eg-mpjpe ↓ Eg-mpjpe (DR) ↓ Freq. (Hz)

MLP Predictor 0.00 0.00 N/A N/A 1000
DDPM 96.88 78.83 140.83 176.04 15
DDIM 96.26 73.65 142.15 171.85 100
HDC 98.54 95.31 128.24 137.66 100

(c) Comparison of generalizability to unseen mo-
tions.

Tested Motion Set Succ (%) ↑ In Dist.
Clean Env. DR.

OmniH2O (Trained on Mall)
Mall 90.27 82.05 ✓
Mval 82.01 55.29 ✓

HDC (Trained on Mtrain)
Mall 92.59 88.88 ✓
Mval 84.16 66.23 ✗

(d) Generalizability of HDC to unseen long-duration
motion sequences in various environments (including
sim-to-sim and sim-to-real), reported with Empjpe.

Tested Motion IssacGym Genesis[50] Real-world

Play the Drum 74.05 80.77 79.64
Wipe the Window 69.37 73.55 67.82
Play the Violin 63.84 67.10 67.67
Stand and Punch 48.51 55.01 55.95

Experiment Setup. To answer the above questions, we evaluate HDC on motion tracking tasks
across multiple simulated environments and the real world, using motions retargeted from the
AMASS dataset [47] with infeasible ones filtered out [11]. All evaluations are conducted on the
Unitree-H1 humanoid, following the PHC [48]. We report the Success Rate (Succ), global MPJPE
Eg-mpjpe, root-relative MPJPE Empjpe (in mm), joint acceleration error Eacc (mm/frame2), and joint
velocity error Evel (mm/frame). Unless otherwise stated, all simulations are run in IsaacGym. As
a baseline, we compare against OmniH2O [13], a recent online RL-based whole-body controller
trained in IsaacGym. For fairness, we match both the state and action spaces between HDC and
OmniH2O. Additional details on the environments, dataset construction, experimental settings, and
baseline implementations are provided in the supplementary material.

4.1 Motion-Tracking Results

To answer Q1, we compare HDC with the representative online RL-based whole-body controller
OmniH2O [13]. To further evaluate the robustness of HDC, we conduct evaluations under do-
main randomization[49] and with added observation noise. As shown in Tab. 1, HDC consistently
outperforms the online RL-based baseline, demonstrating its capability to acquire high-dynamic
control skills from offline data while maintaining robustness against dynamics uncertainty, observa-
tion noise, and compounding errors. Notably, HDC surpasses the oracle policy in terms of success
rate, highlighting its strong multi-skill learning ability. We attribute this advantage to the model’s
high capacity and its ability to represent multi-modal action distributions, without being limited to a
single behavior mode.

4.2 Training and Data Recipe for HDC

We further analyze the impact of training data and recipe design choices (Section 4.2) on the per-
formance of HDC. During the pre-training phase, injecting random action noise when collecting
data in the simulator significantly improves performance, as it enables broader state coverage [46]
and helps HDC better handle compounding errors. In contrast, training solely on clean data results
in severe compounding errors at test time. While the pre-trained model exhibits strong resilience
to compounding errors and dynamics uncertainty, it remains vulnerable to noisy state estimation.
To address this, we introduce observation noise during post-training, which, as shown in Tab. 2a,
effectively enhances HDC’s robustness to state estimation noise. Based on the above results, we
answer Q2 and demonstrate that an appropriate data and training recipe enhances HDC’s ability
to learn robust control from offline data.

7



Figure 3: Visualization of HDC’s real-world deployment on long-horizon motions. In each block, left: from
top to bottom are execution frames in simulation and the real world; right: mean joint position (DoF pos)
trajectories for the upper and lower body over time.

4.3 Evaluating Model Design and Expressiveness for Whole-body Control

To address Q3, we investigate HDC’s capabilities from a model perspective under the offline learn-
ing setting. Specifically, we compare HDC against discriminative models implemented as MLPs
that predict single-step actions based on the current observation and goal state. The results in Tab. 2b
demonstrate that without access to online environment interaction, MLPs suffer from severe com-
pounding errors, often failing to perform any motion. Additionally, we compare HDC with a stan-
dard diffusion model (DDPM [33]) and its accelerated version using DDIM [45], where the inference
frequency is matched to that of HDC. Results in Tab. 2b demonstrates that HDC achieves better
performance and we attribute this to two factors: 1) our partially noisy action generation allows
the model to better capture the uncertainty of future actions during training; 2) the deterministic
sampling in DDIM introduces a training-inference mismatch, which can degrade accuracy. In con-
trast, HDC’s inference strategy is designed to mitigate such discrepancy, thereby preserving both
precision and robustness during deployment.

4.4 Generalizability to Unseen Motions and Environments

To evaluate the motion-level generalization of HDC, we split the original OmniH2O motion dataset
Mall into a training subsetMtrain and a held-out validation subsetMval. We train HDC only using
data collected based on motions fromMtrain, and test it on unseen motions fromMval. As shown
in Tab. 2c, HDC generalizes well to out-of-distribution motions, achieving higher success rates
than OmniH2O even on motion sequences that were included in OmniH2O’s training set. We
further deploy HDC in new simulation and real-world environments. To test its robustness under
long-horizon control, we select several unseen motion sequences exceeding 50 seconds in length,
including Play the Drum, Wipe the Window, Play the Violin, and Stand and Punch. We report
the Empjpe across different environments in Tab. 2d, and visualize both the execution trajectories
and mean joint positions for selected sequences in the real world, as shown in Fig. 3. The results
demonstrate that HDC maintains high-quality control and generalizes across diverse environments.
These results respond to Q4 and suggest that HDC holds strong potential to serve as a general-
purpose whole-body humanoid robot controller.

5 Conclusion

We have presented HDC, the first diffusion-based generative controller for real-time humanoid
whole-body control. Trained on large-scale offline datasets, HDC leverages a scalable Diffusion
Transformer architecture to model complex, multimodal action distributions and generate smooth,
coherent motions over long horizons. Our experimental results demonstrate that expressive genera-
tive controller offer a scalable and effective paradigm for general-purpose humanoid control.
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6 Limitations

While HDC demonstrates strong performance, several limitations remain. First, our current imple-
mentation primarily relies on simulator-collected data, without incorporating other valuable sources
such as real-world trajectories or model-based rollouts. This limits our ability to fully exploit the
generalization and expressiveness potential of large-scale generative models. Second, in real-world
deployments, HDC can be sensitive to large sensor noise, especially severe drift in odometry-based
localization. Unlike RL-based controllers trained with termination-aware penalties—which tend to
act conservatively under high uncertainty—HDC, trained purely from expert demonstrations, may
attempt overly precise control and fail under significant observation errors. These observations high-
light the importance of improving robustness through more diverse and noise-aware offline datasets
as a key direction for future work.
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Supplementary Materials

A State Space Defination

The state space composition of HDC(3-point) and HDC(full) policy is shown in Tab. 3 and Tab. 4.
The motion goal is constituted by three distinct components: the positional discrepancy between
the reference motion and the robot, the reference motion position and reference motion velocity.It
is noteworthy that all three aforementioned components are characterized within the robot’s local
coordinate system.

Table 3: State composition in 3-point control setting

State term Dimensions

DoF position 19
DoF velocity 19
Base(Torso) angular velocity 3
Base gravity 3
Motion goal 27

Total dim 71

Table 4: State composition in full-point control setting

State term Dimensions

DoF position 19
DoF velocity 19
Base(Torso) angular velocity 3
Base gravity 3
Motion goal 207

Total dim 251

B HDC Implementation

B.1 Observation, Goal and Action Horizon

In our implementation, we use an observation and goal horizon of To = 4 and an action horizon of
Ta = 4. This design enables a 4× acceleration during inference. HDC uses 15 denoising inference
steps based on the x0 parameterization.

B.2 HDC Training

During training, inspired by [26], we adopt two noise injection strategies: (1) Linearly Increasing
Variance: The action sequence is treated as a whole, and linearly increasing noise is applied across
time steps. (2) Independent Noise Levels: For each training sample, a step index ki ∼ U [1, . . . , N ] is
drawn, and each step receives an independently sampled noise level from a uniform distribution. In
practice, we apply the linear strategy to 80% of the training samples and the independent strategy to
the remaining 20%. During training, we use the AdamW optimizer with a learning rate of 1.5×10−4,
β = (0.95, 0.999), and a weight decay of 1.0× 10−5. Training is performed on two NVIDIA A100
GPUs for one day, using a batch size of 4096. The learning rate follows a cosine schedule with 1000
warm-up steps.

B.3 HDC Inference

The inference procedure of HDC is summarized in Algorithm 1. At the beginning of sampling from
the HDC, the action buffer At must be initialized for each diffusion step ki of action i = 1, . . . , n.
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One simple option is the Zero primer, where At is initialized as an all-zero tensor. Then, temporally
increasing noise is added according to the diffusion step.

Algorithm 1: HDC Inference
Require: Buffer of future actions At at each timestep t, Per-action noise level k, Denoiser

ϵθ(At,Ot,k), Observations Ot, Diffusion Noise Levels N , Action horizon Ta

1:
2: ▷ Initialize buffer At and per action noise levels k
3: At,k← Initialize buffer(Ot)
4:
5: ▷ Execute HDC in environment.
6: while task not complete do
7: ▷ Denoise actions
8: for Ta denoising iterations do
9: ▷ Run one denoising step

10: At,k← ϵθ(At,Ot,k)
11: end for
12:
13: ▷ Execute first action in environment.
14: env.execute(At[0])
15: ▷ Remove executed first action.
16: At ← At[1 :],k← k[1 :]
17:
18: ▷ Create new fully noised action.
19: Sample z ∼ N (0, I)
20: ▷ Append noise action to buffer / noise levels
21: At.append(z),k.append([N ])
22: t = t+ 1
23: end while
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Figure 4: Architecture of the HDC backbone. The observation embeddings are processed by a Transformer
encoder, and the resulting output is passed to the cross-attention layers of the decoder. The decoder performs
one denoising step, refining the action embeddings from step k to k−1. Positional embeddings are added only
to the observation inputs, while both positional and timestep embeddings are added to the action inputs.
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B.4 Architecture

The HDC is based on a causal Transformer architecture designed for sequence modeling. The
Transformer consists of 8 layers with 8 attention heads and an embedding dimension of 256.
Dropout is applied with a rate of 0.01 on attention weights. Time-step embeddings and conditional
inputs are incorporated via addition. The entire model contains approximately 8 million parameters.
The detailed architecture of HDC is shown in Fig. 4.

B.5 Data Collection Details

We collect training data efficiently in parallel using an oracle policy in IsaacGym, and split the
resulting trajectories into segments for training HDC. The pre-training dataset contains 200 million
samples, while the post-training dataset contains 50 million samples. During data collection, we
injected the same domain randomization and observation noise as used during Oracle policy training.

C Simulation Baselines and Ablations

C.1 Baselines

C.1.1 Oracle Policy

State composition: The Oracle policy[13] is a comprehensive control strategy that leverages priv-
ileged state information to govern the robot. The composition of the state space utilized by this
policy is detailed in Tab. 5. Given the challenges associated with accurately obtaining the global
velocity and global angular velocity in real word,the Oracle policy is only feasible in simulation
environments.

Table 5: State composition of Oracle policy[13]

State term Dimensions

Motion goal DoF position 66
Motion goal Dof rotation 138
Motion goal Dof velocity 69
Motion goal DoF angular velocity 69
DoF position difference 69
DoF rotation difference 138
DoF velocity difference 69
DoF angular velocity difference 69
Local DoF position 69
Local DoF rotation 138
Previous Action 19

Total dim 913

Training: The Oracle policy is trained on the PHC-filtered AMASS dataset utilizing PPO (Proximal
Policy Optimization) and IsaacGym simulator. The model architecture is a standard MLP. The
specific details regarding the training reward, domain randomization and noise scales are presented
in Tab. 6, Tab. 7, Tab. 9
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Table 6: Reward components and weights of Oracle policy: penalty rewards for preventing undesired behaviors
for sim-to-real transfer, regularization to refine motion, and task reward to achieve successful whole-body
tracking in real-time.[13]

Term Expression Weight
Penalty

Torque limits 1(τ t /∈ [τmin, τmax]) -2
DoF position limits 1(dt /∈ [qmin, qmax]) -125
DoF velocity limits 1(ḋt /∈ [q̇min, q̇max]) -50
Termination 1termination -250

Regularization
DoF acceleration ∥d̈t∥E2 -0.000011
DoF velocity ∥ḋt∥22 -0.004
Lower-body action rate ∥alower

t − alower
t−1 ∥22 -3

Upper-body action rate ∥aupper
t − aupper

t−1 ∥22 -0.625
Torque ∥τ t∥ -0.0001
Feet air time Tair − 0.25 1000
Max feet height for each
step

max{hmax feet height for each step − 0.25, 0} 1000

Feet contact force ∥Ffeet∥22 -0.75
Stumble 1(F xy

feet > 5× F z
feet) -0.00125

Slippage ∥vt
feet∥22 × 1(Ffeet ≥ 1) -37.5

Feet orientation ∥gfeet
z ∥ -62.5

In the air 1(F left
feet, F

right
feet < 1) -200

Orientation ∥groot
z ∥ -200

Task Reward
DoF position exp(−0.25∥d̂t − dt∥2) 32

DoF velocity exp(−0.25∥ˆ̇dt − ḋt∥22) 16
Body position exp(−0.5∥pt − p̂t∥22) 30
Body position VRpoints exp(−0.5∥preal

t − p̂real
t ∥22) 50

Body rotation exp(−0.1∥θt ⊖ θ̂t∥) 20
Body velocity exp(−10.0∥vt − v̂t∥2) 8
Body angular velocity exp(−0.01∥ωt − ω̂t∥2) 8

Table 7: Domain randomization parameters used for training the Oracle policy [13].

Parameter Range / Description
Dynamics Randomization

Friction coefficient U(−0.6, 1.2)
Base COM offset U(−0.1, 0.1)m
Link mass scale U(0.7, 1.3)× relative to default
Proportional gain (P) U(0.75, 1.25)× default
Derivative gain (D) U(0.75, 1.25)× default
Torque RFI 0.1× torque limit (N·m)
Control latency U(0, 90)ms
Motion reference offset U([−0.02, 0.02], [−0.02, 0.02], [−0.1, 0.1]) cm

External Perturbation
Lateral push Every 5s, vxy = 1m/s

Randomized Terrain
Terrain type flat, rough, low obstacles
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C.1.2 Student Policy

State composition: The state space of the student policy is constructed using information that is
available during deployment. It adopts a 3-point control scheme and includes a 25-step history of
joint positions and velocities (DoF), torso angular velocity, torso-projected gravity, and previous
actions. The detailed composition of the student policy’s state space is provided in Tab. 8.

Table 8: State composition of OmniH2O student policy[13]

State term Dimensions

DoF position 19
DoF velocity 19
Base(Torso) angular velocity 3
Base gravity 3
Motion goal 27
Previous Action 19

Single step total dim 90

History state term Dimensions

DoF position 19
DoF velocity 19
Base(Torso) angular velocity 3
Base gravity 3
Previous Action 19

History single step total dim 63

Total dim 1665 (63× 25 + 90)

Table 9: Noise scales used for training the Oracle policy [13].

Parameter Noise Scale
Motion goal DoF position 0.01
Motion goal DoF rotation 0.01
Motion goal DoF velocity 0.01
Motion goal DoF angular velocity 0.01
DoF position difference 0.05
DoF rotation difference 0.01
DoF velocity difference 0.01
DoF angular velocity difference 0.01
Local DoF position 0.01
Local DoF rotation 0.01
Previous action 0.00

Training: The student policy is derived from Oracle policy through a distillation process. It utilizes
the identical motion dataset and simulation environment as the Oracle policy. The architecture of the
student policy is also a vanilla MLP. The distillation is implemented using the DAgger algorithm,
which employs the action generated by Oracle policy to supervise the output of student policy. The
loss function employed L2 norm, mathematically defined as ∥aprivilegedt − at∥22.

C.1.3 Vanilla DDPM and DDIM

In the experiments of Section 4.3, we evaluate a vanilla DDPM-based baseline implemented us-
ing our Transformer architecture. The model is trained with 25 denoising steps and adopts the
ϵ-prediction parameterization. The noise schedule is with β ∈ [1e−4, 0.02], implemented via the
DDIM scheduler in the diffusers library, and for DDIM inference, 5 sampling steps are used.
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The model is trained using a batch size of 4096, AdamW optimizer with learning rate 3 × 10−4,
β = (0.95, 0.999), weight decay 1 × 10−6, and cosine learning rate schedule with 1000 warm-up
steps.

C.1.4 MLP Predictor

In the experiments of Section 4.3, we additionally implement a single-step MLP predictor as a
baseline. This model receives the past To = 4 observations as input and predicts the next action in
a autoregressive manner. The MLP consists of two hidden layers with 512 units each and a dropout
rate of 0.1. The model is trained using the AdamW optimizer with a learning rate of 1.5 × 10−4,
β = (0.95, 0.999), and a weight decay of 1.0× 10−5.

C.2 Domain Randomization and Observation Noise during Evaluation

The detailed domain randomization parameter and observation noise for the experiment results
in Section 4 are shown in Tab. 10,Tab. 11.

Table 10: Domain randomization parameter for testing

Term Value

Dynamics Randomizations
Friction U(−0.6, 1.2)
Base Com offset U(−0.1, 0.1)m
Link mass U(0.7, 1.3)× default kg
P Gain U(0.75, 1.25)× default
D Gain U(0.75, 1.25)× default
Torque RFI 0.1× torque limit N ·m
Control delay U(30, 90)ms
Motion reference offset U([−0.02, 0.02], [−0.02, 0.02], [−0.1, 0.1])cm

External Perturbation
Push robot not activated

Randomized Terrain
Terrain type flat, rough, low obstacles

Table 11: Noise scales for testing

Term Value

DoF position 0.01
DoF velocity 0.01
Base angular velocity 0.5
Base gravity 0.1
Motion goal difference 0.05
Motion goal reference 0.05
Motion goal velocity 0.01

C.3 Motion Tracking Experiment Setup

All comparisons in Section 4.1 are conducted on the AMASS dataset filtered using the PHC model,
evaluating motion tracking performance.
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C.4 Ablation Experiment Setup

The experiments in Section 4.2 and Section 4.3 are conducted by randomly sampling 500 motions
from the AMASS dataset for efficient ablation analysis.

C.5 Generalization Analyses Experiment Setup

We evaluate the oracle policy on the full motion datasetMall using motion tracking metrics, specif-
ically computing the lower-body Eg-mpjpe and Empjpe for each sequence. The average of these two
metrics is used as a sorting criterion. We select the top 60% of motions with the lowest error to
collect rollout data for training HDC. Notably, HDC demonstrates strong performance not only on
these in-distribution motions, but also generalizes well to the remaining 40% of motions that it was
not trained on.

D Real world Setup

To obtain observation in the real world, we need to obtain the robot proprioception and motion goal,
as shown in Appendix A.

Robot proprioception: Proprioceptive signals are received via socket communication, in-
cluding motor joint positions and velocities, as well as torso orientation and angular velocity
obtained from the IMU mounted on the torso link of robot.

Motion goal: We use LiDAR-based SLAM [51] to obtain the global position and orientation of
the robot’s head. This head rotation is used to compute the directional offset between the SLAM
coordinate frame and the torso-IMU frame, allowing us to transform the SLAM global position into
the torso-IMU coordinate system. Given the head position, torso orientation (from the IMU), and
joint positions (from DoF readings), the global position and rotation of each joint can be computed
via forward kinematics and standard translation-rotation transformations. For the reference motion,
we select several sequences from the AMASS dataset and prepend it with the robot’s default pose.
Interpolation is applied to smoothly transition from the default pose to the first frame of the motion.
Reference velocities are computed as finite differences between adjacent frames.

When launching the policy, the observation is computed by the proprioception and motion goal and
the policy use it to output action. This action is taken as PD target angles that are sent to robot’s
motors.

E Additional Results for Controlling Long-Horizon Motions in Real World

To further support the generalization capability of HDC across environments and long-horizon mo-
tion sequences, we provide additional results in this section. we visualize the mean joint position of
humanoid robot over time for several unseen motions exceeding 20 seconds in duration. These in-
clude motions such as Single arm punching, Double arm punching, Freestyle swimming, and Chop-
ping with both arm, Sweeping a hoop, Walking fast, and Breaststroke swimming. The results show
that HDC successfully preserves stability, smoothness, and fidelity in physical conditions. These
observations further confirm the robustness and general applicability of HDC as a whole-body con-
troller, addressing Q4 in the main paper.
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Figure 5: Single-arm punch

Figure 6: Double-arm punch

Figure 7: Freestyle swimming

Figure 8: Chopping wood with both arms

Figure 9: Sweeping a hoop
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Figure 10: Fast walking

Figure 11: Breaststroke swimming
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